Using Fermi architecture knowledge to speed up CUDA and OpenCL programs

Yuri Torres, Arturo Gonzalez-Escribano, Diego R. Llanos
Dpto. Informatica, Univ. Valladolid, Spain
International Workshop on Heterogeneus Architectures and Computing (ISPA 2012), 2012

   title={Using Fermi architecture knowledge to speed up CUDA and OpenCL programs},

   author={Torres, Y. and Gonzalez-Escribano, A. and Llanos, D.R.},

   booktitle={Proc. ISPA},



Download Download (PDF)   View View   Source Source   



The NVIDIA graphics processing units (GPUs) are playing an important role as general purpose programming devices. The implementation of parallel codes to exploit the GPU hardware architecture is a task for experienced programmers. The threadblock size and shape choice is one of the most important user decisions when a parallel problem is coded. The threadblock configuration has a significant impact on the global performance of the program. While in CUDA parallel programming model it is always necessary to specify the threadblock size and shape, the OpenCL standard also offers an automatic mechanism to take this delicate decision. In this paper we present a study of these criteria for Fermi architecture, introducing a general approach for threadblock choice, and showing that there is considerable room for improvement in OpenCL automatic strategy.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477223986
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477223986
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => C/YRejgdxVMhb62c4TpOfDpnkpI=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2032 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: