Designing a Unified Programming Model for Heterogeneous Machines

Michael Garland, Manjunath Kudlur, Yili Zheng
Conference on High Performance Computing Networking, Storage and Analysis (SC ’12), 2012

   author={Michael Garland and Manjunath Kudlur and Yili Zheng},

   title={Designing a Unified Programming Model for Heterogeneous Machines},

   booktitle={SC ’12: Proc. Conference on High Performance Computing Networking, Storage and Analysis},




Download Download (PDF)   View View   Source Source   



While high-efficiency machines are increasingly embracing heterogeneous architectures and massive multithreading, contemporary mainstream programming languages reflect a mental model in which processing elements are homogeneous, concurrency is limited, and memory is a flat undifferentiated pool of storage. Moreover, the current state of the art in programming heterogeneous machines tends towards using separate programming models, such as OpenMP and CUDA, for different portions of the machine. Both of these factors make programming emerging heterogeneous machines unnecessarily difficult. We describe the design of the Phalanx programming model, which seeks to provide a unified programming model for heterogeneous machines. It provides constructs for bulk parallelism, synchronization, and data placement which operate across the entire machine. Our prototype implementation is able to launch and coordinate work on both CPU and GPU processors within a single node, and by leveraging the GASNet runtime, is able to run across all the nodes of a distributed-memory machine.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1580 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

293 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: