8196

Exploring Heterogeneous Scheduling using the Task-Centric Programming Model

Artur Podobas, Mats Brorsson, Vladimir Vlassov
Royal Institute of Technology, KTH
Tenth International Workshop Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar’12), 2012
@article{podobas2012exploring,

   title={Exploring Heterogeneous Scheduling using the Task-Centric Programming Model},

   author={Podobas, A. and Brorsson, M. and Vlassov, V.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

360

views

Computer architecture technology is moving towards more heterogeneous solutions, which will contain a number of processing units with different capabilities that may increase the performance of the system as a whole. However, with increased performance comes increased complexity; complexity that is now barely handled in homogeneous multiprocessing systems. The present study tries to solve a small piece of the heterogeneous puzzle; how can we exploit all system resources in a performance-effective and user-friendly way? Our proposed solution includes a run-time system capable of using a variety of different heterogeneous components while providing the user with the already familiar task-centric programming model interface. Furthermore, when dealing with nonuniform workloads, we show that traditional approaches based on centralized or work-stealing queue algorithms do not work well and propose a scheduling algorithm based on trend analysis to distribute work in a performance-effective way across resources.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

142 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1223 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: