Exploring Heterogeneous Scheduling using the Task-Centric Programming Model

Artur Podobas, Mats Brorsson, Vladimir Vlassov
Royal Institute of Technology, KTH
Tenth International Workshop Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar’12), 2012


   title={Exploring Heterogeneous Scheduling using the Task-Centric Programming Model},

   author={Podobas, A. and Brorsson, M. and Vlassov, V.},



Download Download (PDF)   View View   Source Source   



Computer architecture technology is moving towards more heterogeneous solutions, which will contain a number of processing units with different capabilities that may increase the performance of the system as a whole. However, with increased performance comes increased complexity; complexity that is now barely handled in homogeneous multiprocessing systems. The present study tries to solve a small piece of the heterogeneous puzzle; how can we exploit all system resources in a performance-effective and user-friendly way? Our proposed solution includes a run-time system capable of using a variety of different heterogeneous components while providing the user with the already familiar task-centric programming model interface. Furthermore, when dealing with nonuniform workloads, we show that traditional approaches based on centralized or work-stealing queue algorithms do not work well and propose a scheduling algorithm based on trend analysis to distribute work in a performance-effective way across resources.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1488127687
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1488127687
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => CO6DBjMLE6CE6wVcc/zq3aMnLYw=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2172 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: