8351

Parallel H-Tree Based Data Cubing on Graphics Processors

Baoyuan Wang, Yizhou Yu
College of Computer Science and Technology, Zhejiang University, Hangzhou, China
International Journal of Software and Informatics,6(1):61-87, 2012
@article{wang2012parallel,

   title={Parallel H-Tree Based Data Cubing on Graphics Processors},

   author={Wang, B. and Yu, Y.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

356

views

Graphics processing units (GPUs) have an SIMD architecture and have been widely used recently as powerful general-purpose co-processors for the CPU. In this paper, we investigate efficient GPU-based data cubing because the most frequent operation in data cube computation is aggregation, which is an expensive operation well suited for SIMD parallel processors. H-tree is a hyper-linked tree structure used in both top-k H-cubing and the stream cube. Fast H-tree construction, update and real-time query response are crucial in many OLAP applications. We design highly efficient GPU-based parallel algorithms for these H-tree based data cube operations. This has been made possible by taking effective methods, such as parallel primitives for segmented data and efficient memory access patterns, to achieve load balance on the GPU while hiding memory access latency. As a result, our GPU algorithms can often achieve more than an order of magnitude speedup when compared with their sequential counterparts on a single CPU. To the best of our knowledge, this is the first attempt to develop parallel data cubing algorithms on graphics processors.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

171 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1282 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: