High-precision Monte Carlo study of the three-dimensional XY model on GPU

Ti-Yen Lan, Yun-Da Hsieh, Ying-Jer Kao
Center of Theoretical Science and Department of Physics, National Taiwan University, Taipei 10607, Taiwan
arXiv:1211.0780 [cond-mat.stat-mech] (5 Nov 2012)


   author={Lan}, T.-Y. and {Hsieh}, Y.-D. and {Kao}, Y.-J.},

   title={"{High-precision Monte Carlo study of the three-dimensional XY model on GPU}"},

   journal={ArXiv e-prints},




   keywords={Condensed Matter – Statistical Mechanics, Physics – Computational Physics},




   adsnote={Provided by the SAO/NASA Astrophysics Data System}


Download Download (PDF)   View View   Source Source   



We perform large-scale Monte Carlo simulations of the classical XY model on a three-dimensional $Ltimes L times L$ cubic lattice using the graphics processing unit (GPU). By the combination of Metropolis single-spin flip, over-relaxation and parallel-tempering methods, we simulate systems up to L=160. Performing the finite-size scaling analysis, we obtain estimates of the critical exponents for the three-dimensional XY universality class: $alpha=-0.01293(48)$ and $nu=0.67098(16)$. Our estimate for the correlation-length exponent $nu$, in contrast to previous theoretical estimates, agrees with the most recent experimental estimate $nu_{rm exp}=0.6709(1)$ at the superfluid transition of $^4$He in a microgravity environment.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: