8477

Flexible N-Way MIMO Detector on GPU

Michael Wu, Bei Yin, Joseph R. Cavallaro
Electrical and Computer Engineering, Rice University, Houston, Texas 77005
IEEE Workshop on Signal Processing Systems, 2012
@inproceedings{wu2012flexible,

   title={Flexible N-Way MIMO Detector on GPU},

   author={Wu, M. and Yin, B. and Cavallaro, J.R.},

   booktitle={IEEE Workshop on Signal Processing Systems},

   pages={318–323},

   year={2012},

   organization={IEEE Computer Society}

}

Download Download (PDF)   View View   Source Source   

364

views

This paper proposes a flexible Multiple-Input Multiple-Output (MIMO) detector on graphics processing units (GPU). MIMO detection is a key technology in broadband wireless system such as LTE,WiMAX, and 802.11n. Existing detectors either use costly sorting for better performance or sacrifice sorting for higher throughput. To achieve good performance with high thoughput, our detector runs multiple search passes in parallel, where each search pass detects the transmit stream with a different permuted detection order. We show that this flexible detector, including QR decomposition preprocessing, outperforms existing GPU MIMO detectors while maintaining good bit error rate (BER) performance. In addition, this detector can achieve different tradeoffs between throughput and accuracy by changing the number of parallel search passes.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

166 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1272 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: