8545

Scalable Multi-GPU 3-D FFT for TSUBAME 2.0 Supercomputer

Akira Nukada, Kento Sato, Satoshi Matsuoka
Tokyo Institute of Technology
International Conference on High Performance Computing, Networking, Storage and Analysis (SC ’12), 2012
@inproceedings{nukada2012scalable,

   title={Scalable Multi-GPU 3-D FFT for TSUBAME 2.0 Supercomputer},

   author={Nukada, A. and Sato, K. and Matsuoka, S.},

   booktitle={Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis},

   pages={44},

   year={2012},

   organization={IEEE Computer Society Press}

}

Download Download (PDF)   View View   Source Source   

414

views

For scalable 3-D FFT computation using multiple GPUs, efficient all-to-all communication between GPUs is the most important factor in good performance. Implementations with point-to-point MPI library functions and CUDA memory copy APIs typically exhibit very large overheads especially for small message sizes in all-to-all communications between many nodes. We propose several schemes to minimize the overheads, including employment of lower-level API of InfiniBand to effectively overlap intra- and inter-node communication, as well as auto-tuning strategies to control scheduling and determine rail assignments. As a result we achieve very good strong scalability as well as good performance, up to 4.8TFLOPS using 256 nodes of TSUBAME 2.0 Supercomputer (768 GPUs) in double precision.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

169 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1280 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: