8703

Task-based Conjugate-Gradient for multi-GPUs platforms

Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Stojce Nakov, Jean Roman
Universite Sciences et Technologies – Bordeaux I
hal-00767368, (19 December 2012)
@article{agullo2012task,

   title={Task-based Conjugate-Gradient for multi-GPUs platforms},

   author={Agullo, Emmanuel, Giraud, Luc and Guermouche, Abdou and Nakov, Stojce and Roman, Jean},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

363

views

Whereas most today parallel High Performance Computing (HPC) software is written as highly tuned code taking care of low-level details, the advent of the manycore area forces the community to consider modular programming paradigms and delegate part of the work to a third party software. That latter approach has been shown to be very productive and efficient with regular algorithms, such as dense linear algebra solvers. In this paper we show that such a model can be efficiently applied to a much more irregular and less compute intensive algorithm. We illustrate our discussion with the standard unpreconditioned Conjugate Gradient (CG) that we carefully express as a task-based algorithm. We use the StarPU runtime system to assess the efficiency of the approach on a computational platform consisting of three NVIDIA Fermi GPUs. We show that almost optimum speed up (up to 2.89) may be reached (relatively to a mono-GPU execution) when processing large matrices and that the performance is portable when changing the low-level memory transfer mechanism.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1239 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: