8741

Numerical computations in Java with CUDA

Bogdan Oancea, Tudorel Andrei, Andreea Iluzia Iacob
"Nicolae Titulescu" University, 040051, Bucharest, Romania
AWERProcedia Information Technology & Computer Science, 1, 282-285, 2012
@article{oancea2012numerical,

   title={Numerical computations in Java with CUDA},

   author={Oancea, B. and Andrei, T. and Iacob, A.I.},

   journal={AWERProcedia Information Technology and Computer Science},

   volume={1},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

613

views

Parallel computing can offer an enormous advantage regarding the performance for very large applications in almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for general purpose computing, things have evolved and now there are several approaches to GPU programming: CUDA from NVIDIA and Stream from AMD. CUDA is now a popular programming model for general purpose computations on GPU for C/C++ programmers. A great number of applications were ported to CUDA programming model and they obtain speedups of orders of magnitude comparing to optimized CPU implementations. In this paper we present a Java linear algebra library (Java-CUDA) that uses CUBLAS for performing numerical computation on GPU. . Our tests show that the performance of the Java-CUDA library is two orders of magnitude better than the pure Java implementation and 10-20 times better that of the optimized JAVA and CBLAS run on CPU and approximately equal with the C program that call CUBLAS.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

127 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1188 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: