Performance comparison of gauss-Jordan elimination method using OpenMP and CUDA

Baha Sen, Nesrin Aydin Atasoy, Caner Ozcan
Karabuk University, Engineering Faculty, Computer Engineering Department, Baliklarkayasi Mevkii, Karabuk, 78050, Turkey
AWERProcedia Information Technology and Computer Science, Vol 1, 103-108, 2012

   title={Performance comparison of gauss-Jordan elimination method using OpenMP and CUDA},

   author={Sen, B. and Atasoy, N.A. and Ozcan, C.},

   journal={AWERProcedia Information Technology and Computer Science},




Download Download (PDF)   View View   Source Source   



It is important to obtain the results of methods that are used in solving scientific and engineering problems rapidly for users and application developers. Parallel programming techniques have been developed alongside serial programming because the importance of performance has been increasing day by day while developing computer applications.Various methods such as Gauss Elimination (GE) Method, Gauss-Jordan Elimination (GJE) Method, Thomas Method, etc. have been used in solution of Linear Equation System (LES). In this study, performance comparison is done using Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) for nxn matrix via GJE Method. GJE Method is a variant of GE which is used in solving linear system equations (Ax=B). Each step of GJE Method solution algorithm is independent from each other and also the method is appropriate for parallel computing structure; therefore, this method is preferred within the scope of this study. Application coded in C programming language is developed using OpenMP and CUDA. OpenMP is an Application Program Interface that allows parallel programming using compiler directives on Central Processing Unit (CPU). CUDA is known as NVIDIA’s parallel computing architecture and it enables significant increases in computing performance by the Graphics Processing Unit (GPU).Application is realized on Intel Core 2 Quad CPU Q8200 2.33 GHz processor, GeForce 9500 GT graphic card. It is observed that application using Grid-Block-Thread structure and optimized with CUDA displays higher performance than OpenMP in terms of time.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477232048
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477232048
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => /I4IWTLog6p3Gvl9Q9GS28ExoJg=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2032 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: