8743

CUDA based iterative methods for linear systems

Bogdan Oancea
"Nicolae Titulescu" University, 040051, Bucharest, Romania
AWERProcedia, Information Technology & Computer Science, Vol. 1, 228-232, 2012
@article{oancea2012cuda,

   title={CUDA based iterative methods for linear systems},

   author={Oancea, B.},

   journal={AWERProcedia Information Technology and Computer Science},

   volume={1},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

495

views

Solving large linear systems of equations is a common problem in the fields of science and engineering. Direct methods for computing the solution of such systems can be very expensive due to high memory requirements and computational cost. This is a very good reason to use iterative methods which computes only an approximation of the solution.In this paper we present an implementation of some iterative linear systems solvers that use the CUDA programming model. CUDA is now a popular programming model for general purpose computations on GPU and a great number of applications were ported to CUDA obtaining speedups of orders of magnitude comparing to optimized CPU implementations.Our library implements Jacobi, Gauss-Seidel and non-stationary iterative methods (GMRES, BiCG, BiCGSTAB) using C-CUDA extension. We compare the performance of our CUDA implementation with classic programs written to be run on CPU. Our performance tests show speedups of approximately 80 times for single precision floating point and 40 times for double precision.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

172 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1283 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: