A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver

Weihua Geng, Ferosh Jacob
Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
arXiv:1301.5885 [math.NA], (24 Jan 2013)

   author={Geng}, W. and {Jacob}, F.},

   title={"{A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver}"},

   journal={ArXiv e-prints},




   keywords={Mathematics – Numerical Analysis, Computer Science – Numerical Analysis, Physics – Computational Physics},




   adsnote={Provided by the SAO/NASA Astrophysics Data System}


Download Download (PDF)   View View   Source Source   



In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only $11N+6N_c$ size-of-double device memory for a biomolecule with $N$ triangular surface elements and $N_c$ partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up to 300,000 boundary elements will take less than about 10 minutes, hence our approach is particularly suitable for fast electrostatics computations on small to medium biomolecules.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
A GPU-accelerated Direct-sum Boundary Integral Poisson-Boltzmann Solver, 5.0 out of 5 based on 1 rating

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: