Hardware Accelerated Molecular Docking: A Survey

Imre Pechan, Bela Feher
evopro Informatics and Automation Ltd, Budapest, Hungary
Chapter 6 in the book "Bioinformatics", book edited by Horacio Perez-Sanchez, Intechopen, 2012

   title={Hardware Accelerated Molecular Docking: A Survey},

   author={Pechan, I. and Feh{‘e}r, B.},



Download Download (PDF)   View View   Source Source   



Hardware acceleration is the general concept of applying a specialized hardware for a given problem instead of an ordinary CPU in order to get lower processing time. General purpose CPUs can be considered as a totally general platform suitable for executing virtually any software or algorithm. Application specific accelerators have a custom architecture that fits the needs of a certain family of algorithms. As a consequence, they are able to outperform CPUs by orders of magnitude in a special application area but they are unfit for other, more general tasks. In contrast to normal CPUs, which are essentially serial machines executing instructions sequentially, hardware accelerators use parallel architectures which allow them to exploit the parallelism available in the given application by performing independent operations simultaneously. The most important examples of hardware accelerators are graphics processing units (GPUs) and field-programmable gate array devices (FPGAs). GPUs are special many-core processors optimized for 3D rendering and image processing purposes. GPU devices are nowadays part of any desktop PC configurations and they can be programmed with general purpose programming languages. These facts make them an easily accessible and costeffective accelerator platform and explain why they are used more and more frequently even in applications that are not graphics-related (general purpose GPU programming). FPGAs are programmable logic devices consisting of hundreds of thousands of general logic elements whose interconnection can be configured by the user. Thus FPGAs have a highly flexible architecture that allows to implement a totally custom digital hardware without the enormous cost of designing and manufacturing an application-specific integrated circuit (ASIC). When using an FPGA as a hardware accelerator a custom logic device is realized in the FPGA whose only purpose is to execute the algorithm to be accelerated as effectively as possible; thus the algorithm is usually implemented as pure hardware instead of software.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1311 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: