892

GPU sample sort

Nikolaj Leischner, Vitaly Osipov, Peter Sanders
Universitat Karlsruhe (TH), Germany
arXiv:0909.5649v1 [cs.DS] (30 Sep 2009)
@conference{leischner2010gpu,

   title={GPU sample sort},

   author={Leischner, N. and Osipov, V. and Sanders, P.},

   booktitle={Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on},

   pages={1–10},

   year={2010},

   organization={IEEE}

}

Download Download (PDF)   View View   Source Source   

636

views

In this paper, we present the design of a sample sort algorithm for manycore GPUs. Despite being one of the most efficient comparison-based sorting algorithms for distributed memory architectures its performance on GPUs was previously unknown. For uniformly distributed keys our sample sort is at least 25% and on average 68% faster than the best comparison-based sorting algorithm, GPU Thrust merge sort, and on average more than 2 times faster than GPU quicksort. Moreover, for 64-bit integer keys it is at least 63% and on average 2 times faster than the highly optimized GPU Thrust radix sort that directly manipulates the binary representation of keys. Our implementation is robust to different distributions and entropy levels of keys and scales almost linearly with the input size. These results indicate that multi-way techniques in general and sample sort in particular achieve substantially better performance than two-way merge sort and quicksort.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

127 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1188 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: