9305

Improving Numerical Accuracy for Non-Negative Matrix Multiplication on GPUs using Recursive Algorithms

Matthew Badin, Paolo D’Alberto, Lubomir Bic, Michael Dillencourt, Alexandru Nicolau
University of California Irvine, Irvine, CA 92697
International Conference on Supercomputing (ICS), 2013
@article{badin2013improving,

   title={Improving Numerical Accuracy for Non-Negative Matrix Multiplication on GPUs using Recursive Algorithms},

   author={Badin, Matthew and D’Alberto, Paolo and Bic, Lubomir and Dillencourt, Michael and Nicolau, Alexandru},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

364

views

Scientific computing is only bound by the limits of Moore’s Law and the scalability of high performance mathematical library implementations. Most mathematical libraries however tend to focus only on general inputs, limiting their potential performance and scalability by not tailoring their implementation to specific inputs, such as non-negative inputs. By removing this limitation it is possible to improve the performance and accuracy of a range of problems. In this paper we explore the limitations of hardware to improve accuracy of non-negative matrix multiply by specifically comparing implementations on the GPU and CPU and propose algorithmic solutions to improve accuracy. Next, we demonstrate a matrix multiply implementation that takes advantage of asymptotically fast matrix multiply algorithms, which have been shown to scale better than O(N^3) matrix multiply implementations, and improve accuracy by up to a whole digit while increasing performance by up to 27% for matrices where the input is positive. Finally, we propose to extend the BLAS level 3 specification to non-negative matrices to allow easy integration of our solution and allow other library authors to implement their own solutions as part of an existing standard.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1217 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: