11214
Xiang Ying, Xiaoning Wang, Ying He
This paper presents the Saddle Vertex Graph (SVG), a novel solution to the discrete geodesic problem. The SVG is a sparse undirected graph that encodes complete geodesic distance information: a geodesic path on the mesh is equivalent to a shortest path on the SVG, which can be solved efficiently using the shortest path algorithm (e.g., […]
View View   Download Download (PDF)   
Xiang Ying, Shi-Qing Xin, Ying He
In many graphics applications, the computation of exact geodesic distance is very important. However, the high computational cost of the existing geodesic algorithms means that they are not practical for large-scale models or time-critical applications. To tackle this challenge, we propose the parallel Chen-Han (or PCH) algorithm, which extends the classic Chen-Han (CH) discrete geodesic […]
View View   Download Download (PDF)   
Jie-Yi Zhao, Min Tang, Ruo-Feng Tong
We present a novel algorithm to partition large 3D meshes for GPU-accelerated decompression. Our formulation focuses on minimizing the replicated vertices between patches, and balancing the numbers of faces of patches for efficient parallel computing. First we generate a topology model of the original mesh and remove vertex positions. Then we assign the centers of […]
View View   Download Download (PDF)   
Chin-Hong Sin, Chia-Ming Cheng, Shang-Hong Lai, Shan-Yung Yang
In this paper, we present a novel tree-based dynamic programming (TDP) algorithm for efficient stereo reconstruction. We employ the geodesic distance transformation for tree construction, which results in sound image over-segmentation and can be easily parallelized on graphic processing unit (GPU). Instead of building a single tree to convey message in dynamic programming (DP), we […]
View View   Download Download (PDF)   
Denison L. M. Tavares, Joao L. D. Comba
In recent years, considerable research has been devoted to the efficient representation, modeling, processing and rendering of point-based models (point clouds). Due to their conceptual simplicity and superior flexibility, point-based representations evolved into a valuable alternative to polygonal meshes. This paper explores the problem of extracting direct visibility from point clouds without explicitly reconstructing the […]
Rafael P. Torchelsen, Luiz F. Scheidegger, Guilherme N. Oliveira, Rui Bastos, Joao L. D. Comba
Path planning is an active topic in the literature, and efficient navigation over non-planar surfaces is an open research question. In this work we present a novel technique for navigation of multiple agents over arbitrary triangular domains. The proposed solution uses a fast hierarchical computation of geodesic distances over triangular meshes to allow interactive frame […]
View View   Download Download (PDF)   

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1193 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: