Christopher J. Fluke, David G. Barnes, Benjamin R. Barsdell, Amr H. Hassan
General purpose computing on graphics processing units (GPGPU) is dramatically changing the landscape of high performance computing in astronomy. In this paper, we identify and investigate several key decision areas, with a goal of simplyfing the early adoption of GPGPU in astronomy. We consider the merits of OpenCL as an open standard in order to […]
View View   Download Download (PDF)   
Alexander C. Thompson, Christopher J. Fluke, David G. Barnes, Benjamin R. Barsdell
Gravitational lensing calculation using a direct inverse ray-shooting approach is a computationally expensive way to determine magnification maps, caustic patterns, and light-curves (e.g. as a function of source profile and size). However, as an easily parallelisable calculation, gravitational ray-shooting can be accelerated using programmable graphics processing units (GPUs). We present our implementation of inverse ray-shooting […]
View View   Download Download (PDF)   
N. F. Bate, C. J. Fluke, B. R. Barsdell, H. Garsden, G. F. Lewis
To assess how future progress in gravitational microlensing computation at high optical depth will rely on both hardware and software solutions, we compare a direct inverse ray-shooting code implemented on a graphics processing unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU, and a recent implementation of a parallel tree code […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1658 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

335 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: