Christiaan Arnoldus, Robert Witte
It is common to exploit the co-processors of modern computer systems to speed up computations which were traditionally done on the CPU. While this is already very common for computer graphical and scientific applications, there is no reason why this cannot be extended to many different kinds of applications. In this paper we study the […]
View View   Download Download (PDF)   
Rafael Palomar, Jose M. Palomares, Joaquin Olivares, Jose M. Castillo, Juan Gomez-Luna
The LIP-Canny algorithm outperforms traditional Canny edge detection in terms of edge detection under varying illumination. This method is based on a robust mathematical model (LIP paradigm), which is closer to the human vision system. However, this model requires more computations and more complex operations than the traditional paradigm. Non-parallel implementations of LIP-Canny do not […]
View View   Download Download (PDF)   
Peter Vingelmann, Peter Zanaty, Frank H. P. Fitzek, Hassan Charaf
This paper describes the implementation of network coding on OpenGL-enabled graphics cards. Network coding is an interesting approach to increase the capacity and robustness in multi-hop networks. The current problem is to implement random linear network coding on mobile devices which are limited in computational power, energy, and memory. Some mobile devices are equipped with […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1660 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

334 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: