10363

Why it is time for a HyPE: A Hybrid Query Processing Engine for Efficient GPU Coprocessing in DBMS

Sebastian Bress
University of Magdeburg
The VLDB PhD workshop, 2013
BibTeX

Download Download (PDF)   View View   Source Source   

1950

views

GPU acceleration is a promising approach to speed up query processing of database systems by using low cost graphic processors as coprocessors. Two major trends have emerged in this area: (1) The development of frameworks for scheduling tasks in heterogeneous CPU/GPU platforms, which is mainly in the context of coprocessing for applications and does not consider specifics of database-query processing and optimization. (2) The acceleration of database operations using efficient GPU algorithms, which typically cannot be applied easily on other database systems, because of their analytical{algorithm-specific cost models. One major challenge is how to combine traditional database query processing with GPU coprocessing techniques and efficient database operation scheduling in a GPU-aware query optimizer. In this thesis, we develop a hybrid query processing engine, which extends the traditional physical optimization process to generate hybrid query plans and to perform a cost-based optimization in a way that the advantages of CPUs and GPUs are combined. Furthermore, we aim at a portable solution between different GPU-accelerated database management systems to maximize applicability. Preliminary results indicate great potential.
Rating: 2.5/5. From 1 vote.
Please wait...

Recent source codes

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org