FlexGrip: A Soft GPGPU for FPGAs
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
International Conference on Field-Programmable Technology, 2013
Over the past decade, soft microprocessors and vector processors have been extensively used in FPGAs for a wide variety of applications. However, it is difficult to straightforwardly extend their functionality to support conditional and thread-based execution characteristic of general-purpose graphics processing units (GPGPUs) without recompiling FPGA hardware for each application. In this paper, we describe the implementation of FlexGrip, a soft GPGPU architecture which has been optimized for FPGA implementation. This architecture supports direct CUDA compilation to a binary which is executable on the FPGA-based GPGPU without hardware recompilation. Our architecture is customizable, thus providing the FPGA designer with a selection of GPGPU cores which display performance versus area tradeoffs. The benefits of our architecture are evaluated for a collection of five standard CUDA benchmarks which are compiled using standard GPGPU compilation tools. Speedups of up to 30x versus a MicroBlaze microprocessor are achieved for designs which take advantage of the conditional execution capabilities offered by FlexGrip.
October 19, 2013 by hgpu
Your response
You must be logged in to post a comment.