10868

GooFit: A library for massively parallelising maximum-likelihood fits

R. Andreassen, B. T. Meadows, M. de Silva, M. D. Sokoloff, K. Tomko
University of Cincinnati, Physics Department, ML0011, Cincinnati OH 45221-0011, USA
arXiv:1311.1753 [cs.DC], (7 Nov 2013)

@article{2013arXiv1311.1753A,

   author={Andreassen}, R. and {Meadows}, B.~T. and {de Silva}, M. and {Sokoloff}, M.~D. and {Tomko}, K.},

   title={"{GooFit: A library for massively parallelising maximum-likelihood fits}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1311.1753},

   primaryClass={"cs.DC"},

   keywords={Computer Science – Distributed, Parallel, and Cluster Computing, Computer Science – Mathematical Software},

   year={2013},

   month={nov},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1311.1753A},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

3574

views

Fitting complicated models to large datasets is a bottleneck of many analyses. We present GooFit, a library and tool for constructing arbitrarily-complex probability density functions (PDFs) to be evaluated on nVidia GPUs or on multicore CPUs using OpenMP. The massive parallelisation of dividing up event calculations between hundreds of processors can achieve speedups of factors 200-300 in real-world problems.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: