Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer’s Disease
Department of Radiology, Leiden University Medical Center, Netherlands
Frontiers in Neuroinformatics, 7:50, 2013
@article{shamonin2013fast,
title={Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer’s Disease},
author={Shamonin, Denis P and Bron, Esther E and Lelieveldt, BP and Smits, Marion and Klein, Stefan and Staring, Marius},
journal={Name: Frontiers in Neuroinformatics},
volume={7},
pages={50},
year={2013}
}
Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e. for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: i) parallelization on the CPU, to speed up the cost function derivative calculation; ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; iii) exploitation of certain properties of the B-spline transformation model; iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer’s disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer’s Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4-5x on an 8-core machine. Using OpenCL a speedup factor of ~2 was realized for computation of the Gaussian pyramids, and 15-60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88% and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license.
January 2, 2014 by hgpu