Real-time Simultaneous Pose and Shape Estimation for Articulated Objects Using a Single Depth Camera

Mao Ye, Ruigang Yang
University of Kentucky, Lexington, Kentucky, USA, 40506
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014


   title={Real-time Simultaneous Pose and Shape Estimation for Articulated Objects Using a Single Depth Camera},

   author={Ye, Mao and Yang, Ruigang},



Download Download (PDF)   View View   Source Source   



In this paper we present a novel real-time algorithm for simultaneous pose and shape estimation for articulated objects, such as human beings and animals. The key of our pose estimation component is to embed the articulated deformation model with exponential-maps-based parametrization into a Gaussian Mixture Model. Benefiting from the probabilistic measurement model, our algorithm requires no explicit point correspondences as opposed to most existing methods. Consequently, our approach is less sensitive to local minimum and well handles fast and complex motions. Extensive evaluations on publicly available datasets demonstrate that our method outperforms most state-of-art pose estimation algorithms with large margin, especially in the case of challenging motions. Moreover, our novel shape adaptation algorithm based on the same probabilistic model automatically captures the shape of the subjects during the dynamic pose estimation process. Experiments show that our shape estimation method achieves comparable accuracy with state of the arts, yet requires neither parametric model nor extra calibration procedure.
No votes yet.
Please wait...

Recent source codes

* * *

* * *

HGPU group © 2010-2019 hgpu.org

All rights belong to the respective authors

Contact us: