Face Recognition: A Tutorial on Computational Aspects
Dept. of Electrical and Computer Engineering, University of Rochester
University of Rochester, 2015
Face recognition is a sophisticated problem requiring a significant commitment of computer resources. A modern GPU architecture provides a practical platform for performing face recognition in real time. The majority of the calculations of an eigenpicture implementation of face recognition are matrix multiplications. For this type of computation, a conventional computer GPU is capable of computing in tens of milliseconds data that a CPU requires thousands of milliseconds to process. In this chapter, we outline and examine the different components and computational requirements of a face recognition scheme implementing the Viola-Jones Face Detection Framework and an eigenpicture face recognition model. Face recognition can be separated into three distinct parts: face detection, eigenvector projection, and database search. For each, we provide a detailed explanation of the exact process along with an analysis of the computational requirements and scalability of the operation.
January 10, 2015 by hgpu
Your response
You must be logged in to post a comment.