13359

Batched Matrix Computations on Hardware Accelerators Based on GPUs

Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, Jack Dongarra
University of Tennessee
EuroMPI/Asia 2015 Workshop, 2015

@article{haidar2014batched,

   title={Batched Matrix Computations on Hardware Accelerators Based on GPUs},

   author={Haidar, Azzam and Dong, Tingxing and Luszczek, Piotr and Tomov, Stanimire and Dongarra, Jack},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

824

views

Scientific applications require solvers that work on many small size problems that are independent from each other. At the same time, the high-end hardware evolves rapidly and becomes ever more throughput-oriented and thus there is an increasing need for effective approach to develop energy efficient, high-performance codes for these small matrix problems that we call batched factorizations. The many applications that need this functionality could especially benefit from the use of GPUs, which currently are four to five times more energy efficient than multicore CPUs on important scientific workloads. This paper, consequently, describes the development of the most common, one-sided factorizations: Cholesky, LU, and QR for a set of small dense matrices. The algorithms we present together with their implementations are, by design, inherently parallel. In particular, our approach is based on representing the process as a sequence of batched BLAS routines that are executed entirely on a GPU. Importantly, this is unlike the LAPACK and the hybrid MAGMA factorization algorithms that work under drastically different assumptions of hardware design and efficiency of execution of the various computational kernels involved in the implementation. Thus, our approach is more efficient than what works for a combination of multicore CPUs and GPUs for the problems sizes of interest of the application use cases. The paradigm where upon a single chip (a GPU or a CPU) factorizes a single problem at a time is not at all efficient for in our applications’ context. We illustrate all these claims through a detailed performance analysis. With the help of profiling and tracing tools, we guide our development of batched factorizations to achieve up to two-fold speedup and three-fold better energy efficiency as compared against our highly optimized batched CPU implementations based on MKL library. The tested system featured two sockets of Intel Sandy Bridge CPUs and we compared to a batched LU factorizations featured in the CUBLAS library for GPUs, we achieve as high as 2.5x speedup on the NVIDIA K40 GPU.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: