NBODY6++GPU: Ready for the gravitational million-body problem
Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871, Beijing, China
arXiv:1504.03687 [astro-ph.IM], (14 Apr 2015)
@article{wang2015nbodygpu,
title={NBODY6++GPU: Ready for the gravitational million-body problem},
author={Wang, Long and Spurzem, Rainer and Aarseth, Sverre and Nitadori, Keigo and Berczik, Peter and Kouwenhoven, M.B.N. and Naab, Thorsten},
year={2015},
month={apr},
archivePrefix={"arXiv"},
primaryClass={astro-ph.IM}
}
Accurate direct N-body simulations help to obtain detailed information about the dynamical evolution of star clusters. They also enable comparisons with analytical models and Fokker-Planck or Monte-Carlo methods. NBODY6 is a well-known direct N-body code for star clusters, and NBODY6++ is the extended version designed for large particle number simulations by supercomputers. We present NBODY6++GPU, an optimized version of NBODY6++ with hybrid parallelization methods (MPI, GPU, OpenMP, and AVX/SSE) to accelerate large direct N-body simulations, and in particular to solve the million-body problem. We discuss the new features of the NBODY6++GPU code, benchmarks, as well as the first results from a simulation of a realistic globular cluster initially containing a million particles. For million-body simulations, NBODY6++GPU is 400-2000 times faster than NBODY6 with 320 CPU cores and 32 NVIDIA K20X GPUs. With this computing cluster specification, the simulations of million-body globular clusters including 5% primordial binaries require about an hour per half-mass crossing time.
April 17, 2015 by hgpu