16566

A Compiler for Throughput Optimization of Graph Algorithms on GPUs

Sreepathi Pai, Keshav Pingali
The University of Texas at Austin, USA
OOPSLA ’16, 2016
BibTeX

Download Download (PDF)   View View   Source Source   

2537

views

Writing high-performance GPU implementations of graph algorithms can be challenging. In this paper, we argue that three optimizations called throughput optimizations are key to high-performance for this application class. These optimizations describe a large implementation space making it unrealistic for programmers to implement them by hand. To address this problem, we have implemented these optimizations in a compiler that produces CUDA code from an intermediate-level program representation called IrGL. Compared to state-of-the-art handwritten CUDA implementations of eight graph applications, code generated by the IrGL compiler is up to 5.95x times faster (median 1.4x) for five applications and never more than 30% slower for the others. Throughput optimizations contribute an improvement up to 4.16x (median 1.4x) to the performance of unoptimized IrGL code.
No votes yet.
Please wait...

You must be logged in to post a comment.

Recent source codes

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org