17392

Automatically Selecting Profitable Thread Block Sizes Using Machine Learning

Tiffany A. Connors
Texas State University
Texas State University, 2017

@phdthesis{connors2017automatically,

   title={Automatically Selecting Profitable Thread Block Sizes Using Machine Learning},

   author={Connors, Tiffany A},

   year={2017}

}

Download Download (PDF)   View View   Source Source   

532

views

Graphics processing units (GPUs) provide high performance at low power consumption as long as resources are well utilized. Thread block size is one factor in determining a kernel’s occupancy, which is a metric for measuring GPU utilization. A general guideline is to find the block size that leads to the highest occupancy. However, many combinations of block and grid sizes can provide highest occupancy, but performance can vary significantly between different configurations. This is because variation in thread structure yields different utilization of hardware resources. Thus, optimizing for occupancy alone is insufficient and thread structure must also be considered. It is the programmer’s responsibility to set block size, but selecting the right size is not always intuitive. In this paper, we propose using machine learning to automatically select profitable block sizes. Additionally, we show that machine learning techniques coupled with performance counters can provide insight into the underlying reasons for performance variance between different configurations.
Rating: 1.5/5. From 4 votes.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: