18814

Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey

Giang Nguyen, Stefan Dlugolinsky, Martin Bobak, Viet Tran, Alvaro Lopez Garcia, Ignacio Heredia, Peter Malik, Ladislav Hluchy
Institute of Informatics, Slovak Academy of Science (IISAS), Dubravska cesta 9, 845 07 Bratislava, Slovakia
Artificial Intelligence Review, 2019

@article{nguyen2019machine,

   title={Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey},

   author={Nguyen, Giang and Dlugolinsky, Stefan and Bob{‘a}k, Martin and Tran, Viet and Garc{‘i}a, {‘A}lvaro L{‘o}pez and Heredia, Ignacio and Mal{‘i}k, Peter and Hluch{`y}, Ladislav},

   journal={Artificial Intelligence Review},

   pages={1–48},

   year={2019},

   publisher={Springer}

}

Download Download (PDF)   View View   Source Source   

1949

views

The combined impact of new computing resources and techniques with an increasing avalanche of large datasets, is transforming many research areas and may lead to technological breakthroughs that can be used by billions of people. In the recent years, Machine Learning and especially its subfield Deep Learning have seen impressive advances. Techniques developed within these two fields are now able to analyze and learn from huge amounts of real world examples in a disparate formats. While the number of Machine Learning algorithms is extensive and growing, their implementations through frameworks and libraries is also extensive and growing too. The software development in this field is fast paced with a large number of open-source software coming from the academy, industry, start-ups or wider open-source communities. This survey presents a recent time-slide comprehensive overview with comparisons as well as trends in development and usage of cutting-edge Artificial Intelligence software. It also provides an overview of massive parallelism support that is capable of scaling computation effectively and efficiently in the era of Big Data.
Rating: 2.0/5. From 1 vote.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: