5355

GPU Versus FPGA for High Productivity Computing

David H. Jones, Adam Powell, Christos-Savvas Bouganis, Peter Y. K. Cheung
Electrical and Electronic Engineering, Imperial College London, London, UK
International Conference on Field Programmable Logic and Applications (FPL), 2010
BibTeX

Download Download (PDF)   View View   Source Source   

1626

views

Heterogeneous or co-processor architectures are becoming an important component of high productivity computing systems (HPCS). In this work the performance of a GPU based HPCS is compared with the performance of a commercially available FPGA based HPC. Contrary to previous approaches that focussed on specific examples, a broader analysis is performed by considering processes at an architectural level. A set of benchmarks is employed that use different process architectures in order to exploit the benefits of each technology. These include the asynchronous pipelines common to "map" tasks, a partially synchronous tree common to "reduce" tasks and a fully synchronous, fully connected mesh. We show that the GPU is more productive than the FPGA architecture for most of the benchmarks and conclude that FPGA-based HPCS is being marginalised by GPUs.
No votes yet.
Please wait...

Recent source codes

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org