Architecture-Aware Mapping and Optimization on a 1600-Core GPU

Mayank Daga, Thomas Scogland, Wu-chun Feng
Department of Computer Science, Virginia Tech, USA
17th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2011


   title={Architecture-Aware Mapping and Optimization on a 1600-Core GPU},

   author={Daga, M. and Scogland, T. and Feng, W.},



Download Download (PDF)   View View   Source Source   



The graphics processing unit (GPU) continues to make in-roads as a computational accelerator for highperformance computing (HPC). However, despite its increasing popularity, mapping and optimizing GPU code remains a difficult task; it is a multi-dimensional problem that requires deep technical knowledge of GPU architecture. Although substantial literature exists on how to map and optimize GPU performance on the more mature NVIDIA CUDA architecture, the converse is true for OpenCL on an AMD GPU, such as the 1600-core AMD Radeon HD 5870 GPU. Consequently, we present and evaluate architecture-aware mapping and optimizations for the AMD GPU. The most prominent of which include (i) explicit use of registers, (ii) use of vector types, (iii) removal of branches, and (iv) use of image memory for global data. We demonstrate the efficacy of our AMD GPU mapping and optimizations by applying each in isolation as well as in concert to a large-scale, molecular modeling application called GEM. Via these AMD-specific GPU optimizations, our optimized OpenCL implementation on an AMD Radeon HD 5870 delivers more than a fourfold improvement in performance over the basic OpenCL implementation. In addition, it outperforms our optimized CUDA version on an NVIDIA GTX280 by 12%. Overall, we achieve a speedup of 371-fold over a serial but hand-tuned SSE version of our molecular modeling application, and in turn, a 46-fold speedup over an ideal scaling on an 8-core CPU.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2021 hgpu.org

All rights belong to the respective authors

Contact us: