Analytic Anti-Aliasing of Linear Functions on Polytopes
Vienna University of Technology, Austria
Computer Graphics Forum (EUROGRAPHICS 2012), 2012
@article{Auzinger_2012_AAA,
title={"AnalyticAnti-AliasingofLinearFunctionsonPolytopes"},
author={"ThomasAuzingerandMichaelGutheandStefanJeschke"},
year={2012},
month={may},
event={"Eurographics2012"},
journal={"ComputerGraphicsForum(ProceedingsofEUROGRAPHICS2012)"},
location={"Cagliari},
keywords={"SphericallySymmetricFilter},
URL={"http://www.cg.tuwien.ac.at/research/publications/2012/Auzinger_2012_AAA/"}
}
This paper presents an analytic formulation for anti-aliased sampling of 2D polygons and 3D polyhedra. Our framework allows the exact evaluation of the convolution integral with a linear function defined on the polytopes. The filter is a spherically symmetric polynomial of any order, supporting approximations to refined variants such as the Mitchell-Netravali filter family. This enables high-quality rasterization of triangles and tetrahedra with linearly interpolated vertex values to regular and non-regular grids. A closed form solution of the convolution is presented and an efficient implementation on the GPU using DirectX and CUDA C is described.
February 13, 2012 by hgpu