7365

A computing origami: Optimized code generation for emerging parallel platforms

Hagiescu Miriste Andrei Mihai
Politehnica University of Bucharest, Romania
Department of Computer Science, National University of Singapore, 2011
BibTeX

Download Download (PDF)   View View   Source Source   

2212

views

This thesis deals with code generation for parallel applications on emerging platforms, in particular FPGA and GPU-based platforms. These platforms expose a large design space, throughout which performance is affected by significant architectural idiosyncrasies. In this context, generating efficient code is a global optimization problem. The code generation methods described in this thesis apply to applications which expose a flexible parallel structure that is not bound to the target platform. The application is restructured in a way which can be intuitively visualized as Origami (the Japanese art of paper folding). The thesis makes three significant contributions: (1) It provides code generation methods starting from a general stream processing language (StreamIt) for both FPGA and GPU platforms. (2) It describes how the code generation methods can be extended beyond streaming applications to finer-grained parallel computation. On FPGAs, this is illustrated by a method that generates configurable floating-point SIMD coprocessors for vectorizable code. On GPUs, the method is extended to applications which expose fine-grained parallel code accompanied by a significant amount of read sharing. (3) It shows how these methods can be used on a platform which consists of multiple GPU devices connected to a host CPU. The methods can be applied to a broad range of applications. They go beyond mapping and provide tightly integrated code generation tools that handle together high-level mapping, code rewriting, optimizations and modular compilation. These methods target FPGA and GPU platforms without requiring user-added annotations. The results indicate the efficiency of the methods described.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org