7733

Solving the Ghost-Gluon System of Yang-Mills Theory on GPUs

Markus Hopfer, Reinhard Alkofer, Gundolf Haase
Institut fur Physik, Karl-Franzens Universitat, Universitatsplatz 5, 8010 Graz, Austria
arXiv:1206.1779v1 [hep-ph] (8 Jun 2012)

@article{2012arXiv1206.1779H,

   author={Hopfer}, M. and {Alkofer}, R. and {Haase}, G.},

   title={"{Solving the Ghost-Gluon System of Yang-Mills Theory on GPUs}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1206.1779},

   primaryClass={"hep-ph"},

   keywords={High Energy Physics – Phenomenology, High Energy Physics – Theory, Physics – Computational Physics},

   year={2012},

   month={jun},

   adsurl={http://adsabs.harvard.edu/abs/2012arXiv1206.1779H},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

1864

views

We solve the ghost-gluon system of Yang-Mills theory using Graphics Processing Units (GPUs). Working in Landau gauge, we use the Dyson-Schwinger formalism for the mathematical description as this approach is well-suited to directly benefit from the computing power of the GPUs. With the help of a Chebyshev expansion for the dressing functions and a subsequent appliance of a Newton-Raphson method, the non-linear system of coupled integral equations is linearized. The resulting Newton matrix is generated in parallel using OpenMPI and CUDA(TM). Our results show, that it is possible to cut down the run time by two orders of magnitude as compared to a sequential version of the code. This makes the proposed techniques well-suited for Dyson-Schwinger calculations on more complicated systems where the Yang-Mills sector of QCD serves as a starting point. In addition, the computation of Schwinger functions using GPU devices is studied.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: