An Improved CUDA-Based Implementation of Differential Evolution on GPU

A. K. Qin, Federico Raimondo, Florence Forbes, Yew Soon Ong
INRIA Grenoble Rhone-Alpes, 655 avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex, France
Genetic and Evolutionary Computation Conference (Gecco 2012), 2012


   title={An Improved CUDA-Based Implementation of Differential Evolution on GPU},

   author={Qin, A. K. and Raimondo, Federico and Forbes, Florence andf Ong, Yew Soon},



Download Download (PDF)   View View   Source Source   



Modern GPUs enable widely affordable personal computers to carry out massively parallel computation tasks. NVIDIA’s CUDA technology provides a wieldy parallel computing platform. Many state-of-the-art algorithms arising from different fields have been redesigned based on CUDA to achieve computational speedup. Differential evolution (DE), as a very promising evolutionary algorithm, is highly suitable for parallelization owing to its dataparallel algorithmic structure. However, most existing CUDAbased DE implementations suffer from excessive low-throughput memory access and less efficient device utilization. This work presents an improved CUDA-based DE to optimize memory and device utilization: several logically-related kernels are combined into one composite kernel to reduce global memory access; kernel execution configuration parameters are automatically determined to maximize device occupancy; streams are employed to enable concurrent kernel execution to maximize device utilization. Experimental results on several numerical problems demonstrate superior computational time efficiency of the proposed method over two recent CUDA-based DE and the sequential DE across varying problem dimensions and algorithmic population sizes.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2021 hgpu.org

All rights belong to the respective authors

Contact us: