8649

Multi-level Parallelism for Incompressible Flow Computations on GPU Clusters

Dana A. Jacobsen, Inanc Senocak
Boise State University
Parallel Computing, 2012

@article{jacobsen2012multi,

   title={Multi-level Parallelism for Incompressible Flow Computations on GPU Clusters},

   author={Jacobsen, D.A. and Senocak, I.},

   journal={Parallel Computing},

   year={2012},

   publisher={Elsevier}

}

Download Download (PDF)   View View   Source Source   

2220

views

We investigate multi-level parallelism on GPU clusters with MPI-CUDA and hybrid MPI-OpenMP-CUDA parallel implementations, in which all computations are done on the GPU using CUDA. We explore efficiency and scalability of incompressible flow computations using up to 256 GPUs on a problem with approximately 17.2 billion cells. Our work addresses some of the unique issues faced when merging fine-grain parallelism on the GPU using CUDA with coarse-grain parallelism that use either MPI or MPI-OpenMP for communications. We present three different strategies to overlap computations with communications, and systematically assess their impact on parallel performance on two different GPU clusters. Our results for strong and weak scaling analysis of incompressible flow computations demonstrate that GPU clusters offer significant benefits for large data sets, and a dual-level MPI-CUDA implementation with maximum overlapping of computation and communication provides substantial benefits in performance. We also find that our tri-level MPI-OpenMP-CUDA parallel implementation does not offer a significant advantage in performance over the dual-level implementation on GPU clusters with two GPUs per node, but on clusters with higher GPU counts per node or with different domain decomposition strategies a tri-level implementation may exhibit higher efficiency than a dual-level implementation and needs to be investigated further.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: