8943

pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video

Florian Seidel, Clemens Hage, Martin Kleinsteuber
Department of Informatics, Technische Universitat Munchen, Boltzmannstr. 3, 85748 Garching, Germany
arXiv:1302.2073 [cs.CV], (8 Feb 2013)

@article{2013arXiv1302.2073S,

   author={Seidel}, F. and {Hage}, C. and {Kleinsteuber}, M.},

   title={"{pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1302.2073},

   primaryClass={"cs.CV"},

   keywords={Computer Science – Computer Vision and Pattern Recognition},

   year={2013},

   month={feb},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1302.2073S},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

1724

views

An increasing number of methods for background subtraction use Robust PCA to identify sparse foreground objects. While many algorithms use the L1-norm as a convex relaxation of the ideal sparsifying function, we approach the problem with a smoothed Lp-norm and present pROST, a method for robust online subspace tracking. The algorithm is based on alternating minimization on manifolds. Implemented on a graphics processing unit it achieves realtime performance. Experimental results on a state-of-the-art benchmark for background subtraction on real-world video data indicate that the method succeeds at a broad variety of background subtraction scenarios, and it outperforms competing approaches when video quality is deteriorated by camera jitter.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: