9354

GPU Sparse Matrix Multiplication with CUDA

Sean Rose
College of Arts and Sciences, Department of Computer Science Research, Florida State University
Florida State University, 2013
BibTeX

Download Download (PDF)   View View   Source Source   

2878

views

Matrix multiplication is a commonly-used mathematical operation that has many practical applications. It is used to solve a number of problems in a wide variety of fields including science, engineering, and computer science. Given two matrices, A and B, and a resultant matrix C. The concept of density is used to describe the number of nonzero elements in a matrix relative to the total number of elements. For an NxM matrix with Z nonzero elements, the density is defined as Z=(NxM). A sparse matrix is one which has a low density. Sparse matrices can be stored in special formats to eliminate the need for the zero elements to be stored. The storage format and potentially large matrix size presents a challenge when designing an efficient sparse matrix multiplication algorithm.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org