8828

Posts

Jan, 7

CUDA based iterative methods for linear systems

Solving large linear systems of equations is a common problem in the fields of science and engineering. Direct methods for computing the solution of such systems can be very expensive due to high memory requirements and computational cost. This is a very good reason to use iterative methods which computes only an approximation of the […]
Jan, 7

Performance comparison of gauss-Jordan elimination method using OpenMP and CUDA

It is important to obtain the results of methods that are used in solving scientific and engineering problems rapidly for users and application developers. Parallel programming techniques have been developed alongside serial programming because the importance of performance has been increasing day by day while developing computer applications.Various methods such as Gauss Elimination (GE) Method, […]
Jan, 7

Numerical computations in Java with CUDA

Parallel computing can offer an enormous advantage regarding the performance for very large applications in almost any field: scientific computing, computer vision, databases, data mining, and economics. GPUs are high performance many-core processors that can obtain very high FLOP rates. Since the first idea of using GPU for general purpose computing, things have evolved and […]
Jan, 7

Interactive Refactoring for GPU Parallelization of Affine Loops

Considerable recent attention has been given to the problem of porting existing code to heterogeneous computing architectures, such as GPUs. In this paper, we describe a novel, interactive refactoring tool that allows for quick and easy transformation of affine loops to execute on GPUs. Compared to previous approaches, our refactoring approach interactively combines the user’s […]
Jan, 6

High-throughput Analysis of Large Microscopy Image Datasets on CPU-GPU Cluster Platforms

Analysis of large pathology image datasets offers significant opportunities for biomedical researchers to investigate the morphology of disease, but the resource requirements of image analyses limit the scale of those studies. Motivated by such a study, we propose and evaluate a parallel image analysis application pipeline for high throughput computation of large datasets of high […]
Jan, 5

Approximate Subdivision Surface Evaluation in the Language of Linear Algebra

We present an interpretation of approximate subdivision surface evaluation in the language of linear algebra. Specifically, vertices in the refined mesh can be computed by left-multiplying the vector of control vertices by a sparse matrix we call the subdivision operator. This interpretation is rather general: it applies to any level of subdivision, it holds for […]
Jan, 4

Hybrid GATE: A GPU/CPU implementation for imaging and therapy applications

Monte Carlo simulations (MCS) play a key role in medical applications. In this context GATE is a MCS platform dedicated to medical imaging and particle therapy. Yet MCS are very computationally demanding, which limits their applicability in clinical practice. Recently, graphics processing units (GPU) became, in many domains, a cost-effective solution to access high power […]
Jan, 4

Graphic-Processing-Units Based Adaptive Parameter Estimation of a Visual Psychophysical Model

The applicability and effectiveness of adaptive design optimization (ADO) in selecting optimal stimuli or designs for experimental trials has been well demonstrated in several content areas of cognitive psychology (Myung & Pitt, 2009; Cavagnaro et al, 2010). On the other hand, when applying ADO to real-time, online experiments such as psychophysical experiments with human subjects, […]
Jan, 4

Parallel one-versus-rest SVM training on the GPU

Linear SVMs are a popular choice of binary classifier. It is often necessary to train many different classifiers on a multiclass dataset in a one-versus-rest fashion, and this for several values of the regularization constant. We propose to harness GPU parallelism by training as many classifiers as possible at the same time. We optimize the […]
Jan, 4

Fast Global Illumination for Interactive Volume Visualization

High quality global illumination can enhance the visual perception of depth cue and local thickness of volumetric data but it is seldom used in scientific visualization because of its high computational cost. This paper presents a novel grid-based illumination technique which is specially designed and optimized for volume visualization purpose. It supports common light sources […]
Jan, 4

Long Timestep Molecular Dynamics on the Graphical Processing Unit

Molecular dynamics (MD) simulations now play a key role in many areas of theoretical chemistry, biology, physics, and materials science. In many cases, such calculations are significantly limited by the massive amount of computer time needed to perform calculations of interest. Herein, we present Long Timestep Molecular Dynamics (LTMD), a method to significantly speed MD […]
Jan, 4

Automatic Code Generation for Stencil Computations on GPU Architectures

The development of parallel architectures is now nearly ubiquitous in not only the high-performance computing field, but also the commodity electronics market. Even embedded processors found in cell phones and tablet computers are starting to incorporate parallel architectures. These architectures are exploiting both SIMD (Single-Instruction Multiple-Data) and SIMT (Simple- Instruction Multiple-Thread) parallelism to achieve higher […]

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org