Nov, 3

Research on OpenCL optimization for FPGA deep learning application

In recent years, with the development of computer science, deep learning is held as competent enough to solve the problem of inference and learning in high dimensional space. Therefore, it has received unprecedented attention from both the academia and the business community. Compared with CPU/GPU, FPGA has attracted much attention for its high-energy efficiency, short […]
Oct, 27

PyTorchPipe: a framework for rapid prototyping of pipelines combining language and vision

Access to vast amounts of data along with affordable computational power stimulated the reincarnation of neural networks. The progress could not be achieved without adequate software tools, lowering the entry bar for the next generations of researchers and developers. The paper introduces PyTorchPipe (PTP), a framework built on top of PyTorch. Answering the recent needs […]
Oct, 27

Performance Evaluation of Advanced Features in CUDA Unified Memory

CUDA Unified Memory improves the GPU programmability and also enables GPU memory oversubscription. Recently, two advanced memory features, memory advises and asynchronous prefetch, have been introduced. In this work, we evaluate the new features on two platforms that feature different CPUs, GPUs, and interconnects. We derive a benchmark suite for the experiments and stress the […]
Oct, 27

Performance Debugging Frameworks for FPGA High-Level Synthesis

Using high-level synthesis (HLS) tools for field-programmable gate array (FPGA) design is becoming an increasingly popular choice because HLS tools can generate a high-quality design in a short development time. However, current HLS tools still cannot adequately support users in understanding and fixing the performance issues of the current design. That is, current HLS tools […]
Oct, 27

SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs

We introduce SneakySnake, a highly parallel and highly accurate pre-alignment filter that remarkably reduces the need for the computationally costly sequence alignment step. The key idea of SneakySnake is to provide fast and highly accurate filtering by reducing the ASM problem to the single net routing (SNR) problem in VLSI chip layout. In the SNR […]
Oct, 27

A Benchmark Set of Highly-efficient CUDA and OpenCL Kernels and its Dynamic Autotuning with Kernel Tuning Toolkit

Autotuning of performance-relevant source-code parameters allows to automatically tune applications without hard coding optimizations and thus helps with keeping the performance portable. In this paper, we introduce a benchmark set of ten autotunable kernels for important computational problems implemented in OpenCL or CUDA. Using our Kernel Tuning Toolkit, we show that with autotuning most of […]
Oct, 20

AI Benchmark: All About Deep Learning on Smartphones in 2019

The performance of mobile AI accelerators has been evolving rapidly in the past two years, nearly doubling with each new generation of SoCs. The current 4th generation of mobile NPUs is already approaching the results of CUDA-compatible Nvidia graphics cards presented not long ago, which together with the increased capabilities of mobile deep learning frameworks […]
Oct, 20

Blink: Fast and Generic Collectives for Distributed ML

Model parameter synchronization across GPUs introduces high overheads for data-parallel training at scale. Existing parameter synchronization protocols cannot effectively leverage available network resources in the face of ever increasing hardware heterogeneity. To address this, we propose Blink, a collective communication library that dynamically generates optimal communication primitives by packing spanning trees. We propose techniques to […]
Oct, 20

DBCSR: A Library for Dense Matrix Multiplications on Distributed GPU-Accelerated Systems

Most, if not all the modern scientific simulation packages utilize matrix algebra operations. Among the operation of the linear algebra, one of the most important kernels is the multiplication of matrices, dense and sparse. Examples of application of such a kernel are in electronic structure calculations, machine learning, data mining, graph processing, and digital signal […]
Oct, 20

Characterizing Deep Learning Training Workloads on Alibaba-PAI

Modern deep learning models have been exploited in various domains, including computer vision (CV), natural language processing (NLP), search and recommendation. In practical AI clusters, workloads training these models are run using software frameworks such as TensorFlow, Caffe, PyTorch and CNTK. One critical issue for efficiently operating practical AI clouds, is to characterize the computing […]
Oct, 20

The Memory Controller Wall: Benchmarking the Intel FPGA SDK for OpenCL Memory Interface

Supported by their high power efficiency and recent advancements in High Level Synthesis (HLS), FPGAs are quickly finding their way into HPC and cloud systems. Large amounts of work have been done so far on loop and area optimizations for different applications on FPGAs using HLS. However, a comprehensive analysis of the behavior and efficiency […]
Oct, 13

Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization

A fundamental recurring task in many machine learning applications is the search for the Nearest Neighbor in high dimensional metric spaces. Towards answering queries in large scale problems, state-of-the-art methods employ Approximate Nearest Neighbors (ANN) search, a search that returns the nearest neighbor with high probability, as well as techniques that compress the dataset. Product-Quantization […]

* * *

* * *

HGPU group © 2010-2020 hgpu.org

All rights belong to the respective authors

Contact us: