24963

Posts

May, 9

A fluid simulation system based on the MPS method

Fluid flow simulation is a highly active area with applications in a wide range of engineering problems and interactive systems. Meshless methods like the Moving Particle Semi-implicit (MPS) are a great alternative to deal efficiently with large deformations and free-surface flow. However, mesh-based approaches can achieve higher numerical precision than particle-based techniques with a performance […]
May, 9

Irregularity Mitigation and Portability Abstractions for Accelerated Sparse Matrix Factorization

In this thesis, we investigate new ways to mitigate the inherent irregularity in sparse matrix factorizations and decompose the resulting computation into simple kernels which are portable across a diverse set of compute accelerator architectures through our novel compiler borG. Be it weather prediction, climate models, personalized medicine, genetic analysis and autonomous driving: some of […]
May, 9

Efficacy of Images Versus Data Buffers: Optimizing Interactive Applications Utilizing OpenCL for Scientific Visualization

This paper examines an algorithm using dual OpenCL image buffers to optimize data streaming for ensemble processing and visualization. Image buffers were utilized because they allow cached memory access, unlike simple data buffers, which are more commonly used. OpenCL image object performance was improved by allowing upload and mapping into one buffer to occur concurrently […]
May, 2

DeepfakeUCL: Deepfake Detection via Unsupervised Contrastive Learning

Face deepfake detection has seen impressive results recently. Nearly all existing deep learning techniques for face deepfake detection are fully supervised and require labels during training. In this paper, we design a novel deepfake detection method via unsupervised contrastive learning. We first generate two different transformed versions of an image and feed them into two […]
May, 2

Enabling Energy-Efficient DNN Training on Hybrid GPU-FPGA Accelerators

DNN training consumes orders of magnitude more energy than inference and requires innovative use of accelerators to improve energy-efficiency. However, despite having complementary features, GPUs and FPGAs have been mostly used independently for the entire training process, thus neglecting the opportunity in assigning individual but distinct operations to the most suitable hardware. In this paper, […]
May, 2

Performance analysis and optimization of highly diverging algorithms on GPUs

In this thesis, the performance of the IceCube projects photon propagation code (clsim) is optimized. The process of GPU code analysis and performance optimization is described in detail. When run on the same hardware, the new version achieves a speedup of about 3x over the original implementation. Comparing the unmodified code on hardware currently used […]
May, 2

Easy and Efficient Transformer: Scalable Inference Solution For large NLP mode

The ultra-large-scale pre-training model can effectively improve the effect of a variety of tasks, and it also brings a heavy computational burden to inference. This paper introduces a series of ultra-large-scale pre-training model optimization methods that combine algorithm characteristics and GPU processor hardware characteristics, and on this basis, propose an inference engine — Easy and […]
May, 2

tcFFT: Accelerating Half-Precision FFT through Tensor Cores

Fast Fourier Transform (FFT) is an essential tool in scientific and engineering computation. The increasing demand for mixed-precision FFT has made it possible to utilize half-precision floating-point (FP16) arithmetic for faster speed and energy saving. Specializing in lower precision, NVIDIA Tensor Cores can deliver extremely high computation performance. However, the fixed computation pattern makes it […]
Apr, 25

How to Train BERT with an Academic Budget

GPUs are now used for a wide range of problems within HPC. However, making efficient use of the computational power available with multiple GPUs is challenging. The main challenges in achieving good performance are memory layout, affecting memory bandwidth, effective use of the memory spaces with a GPU, inter-GPU communication, and synchronization. We address these […]
Apr, 25

Deep Graph Learning for Program Analysis and System Optimization

It has been increasingly challenging for the compilers to cope with the evolving computer architectures. The manually written compiler heuristics are not sufficiently wise to capture the impact of data and hardware related dependencies on performance. However, machine learning offers an opportunity to learn the common patterns in the existing dataset and predict the future […]
Apr, 25

Ripple: Simplified Large-Scale Computation on Heterogeneous Architectures with Polymorphic Data Layout

GPUs are now used for a wide range of problems within HPC. However, making efficient use of the computational power available with multiple GPUs is challenging. The main challenges in achieving good performance are memory layout, affecting memory bandwidth, effective use of the memory spaces with a GPU, inter-GPU communication, and synchronization. We address these […]
Apr, 25

CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU

We introduce CryptGPU, a system for privacy-preserving machine learning that implements all operations on the GPU (graphics processing unit). Just as GPUs played a pivotal role in the success of modern deep learning, they are also essential for realizing scalable privacy-preserving deep learning. In this work, we start by introducing a new interface to losslessly […]

* * *

* * *

* * *

HGPU group © 2010-2022 hgpu.org

All rights belong to the respective authors

Contact us: