19014

Posts

Jul, 28

A Power Efficient Neural Network Implementation on Heterogeneous FPGA and GPU Devices

Deep neural networks (DNNs) have seen tremendous industrial successes in various applications, including image recognition, machine translation, audio processing, etc. However, they require massive amounts of computations and take a lot of time to process. This quickly becomes a problem in mobile and handheld devices where real-time multimedia applications such as face detection, disaster management, […]
Jul, 28

NNS: The Case For Neural Network-based Sorting

CPU-SIMD/GPU/TPUs will be increasingly powerful. The algorithm using neural network and heterogeneous computing framework will bring significant performance improvement. In this paper we prove a novel neural network-based sorting algorithm, NNS which hold lower time complexity than O(nlogn) and easy implement in heterogeneous framework executed by CPU and GPU. Our initial results show that our […]
Jul, 28

GPU-Accelerated Atari Emulation for Reinforcement Learning

We designed and implemented a CUDA port of the Atari Learning Environment (ALE), a system for developing and evaluating deep reinforcement algorithms using Atari games. Our CUDA Learning Environment (CuLE) overcomes many limitations of existing CPU-based Atari emulators and scales naturally to multi-GPU systems. It leverages the parallelization capability of GPUs to run thousands of […]
Jul, 28

Benchmarking TPU, GPU, and CPU Platforms for Deep Learning

Training deep learning models is compute-intensive and there is an industry-wide trend towards hardware specialization to improve performance. To systematically benchmark deep learning platforms, we introduce ParaDnn, a parameterized benchmark suite for deep learning that generates end-to-end models for fully connected (FC), convolutional (CNN), and recurrent (RNN) neural networks. Along with six real-world models, we […]
Jul, 26

MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing

In this paper, we present work towards the development of a new data analytics and machine learning (ML) framework, called MagmaDNN. Our main goal is to provide scalable, high-performance data analytics and ML solutions for scientific applications running on current and upcoming heterogeneous many-core GPU-accelerated architectures. To this end, since many of the functionalities needed […]
Jul, 24

Assessing the feasibility of OpenCL CPU implementations for agent-based simulations

Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being modeled is uniquely represented as a self-determining agent. Large scale emergent behavior in ABMs is population sensitive. As such, it is advisable that the number of agents in a simulation is able to reflect the reality of the system being […]
Jul, 21

Sorting on FPGAs using Merge Trees

Hardware Mergers can be used to implement sorting algorithms on Field-Programmable Gate Arrays (FPGAs) by inductively merging elements as in the Merge Sort algorithm.[1][2] These Hardware Mergers have also been laid out onto the FPGA in a complete binary tree pattern (called a Hardware Merge Tree) which further enhances performance of the sorting procedure by […]
Jul, 21

A Versatile Software Systolic Execution Model for GPU Memory-Bound Kernels

This paper proposes a versatile high-performance execution model, inspired by systolic arrays, for memory-bound regular kernels running on CUDA-enabled GPUs. We formulate a systolic model that shifts partial sums by CUDA warp primitives for the computation. We also employ register files as a cache resource in order to operate the entire model efficiently. We demonstrate […]
Jul, 21

GRN: Gated Relation Network to Enhance Convolutional Neural Network for Named Entity Recognition

The dominant approaches for named entity recognition (NER) mostly adopt complex recurrent neural networks (RNN), e.g., long-short-term-memory (LSTM). However, RNNs are limited by their recurrent nature in terms of computational efficiency. In contrast, convolutional neural networks (CNN) can fully exploit the GPU parallelism with their feedforward architectures. However, little attention has been paid to performing […]
Jul, 21

A Highly Efficient Distributed Deep Learning System For Automatic Speech Recognition

Modern Automatic Speech Recognition (ASR) systems rely on distributed deep learning to for quick training completion. To enable efficient distributed training, it is imperative that the training algorithms can converge with a large mini-batch size. In this work, we discovered that Asynchronous Decentralized Parallel Stochastic Gradient Descent (ADPSGD) can work with much larger batch size […]
Jul, 21

Block based Singular Value Decomposition approach to matrix factorization for recommender systems

With the abundance of data in recent years, interesting challenges are posed in the area of recommender systems. Producing high quality recommendations with scalability and performance is the need of the hour. Singular Value Decomposition(SVD) based recommendation algorithms have been leveraged to produce better results. In this paper, we extend the SVD technique further for […]
Jul, 16

Out-of-core singular value decomposition

Singular value decomposition (SVD) is a standard matrix factorization technique that produces optimal low-rank approximations of matrices. It has diverse applications, including machine learning, data science and signal processing. However, many common problems involve very large matrices that cannot fit in the main memory of commodity computers, making it impractical to use standard SVD algorithms […]

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: