Fast Morphological Image Processing on GPU using CUDA

Mugdha A. Rane
Department of Computer Engineering and Information Technology, College of Engineering, Pune
College of Engineering, Pune, 2013

   title={Fast Morphological Image Processing on GPU using CUDA},

   author={Rane, Mugdha A},



Download Download (PDF)   View View   Source Source   



A mathematical morphology is used as a tool for extracting image components that are useful in the representation and description of region shape. The mathematical morphology operations of dilation, erosion, opening, and closing are important building blocks of many other image processing algorithms. The data parallel programming provides an opportunity for performance acceleration using highly parallel processors such as GPU. NVIDIA CUDA architecture offers relatively inexpensive and powerful framework for performing these operations. However the generic morphological erosion and dilation operation in CUDA NPP library is relatively naive, but it provides impressive speed ups only for a limited range of structuring element sizes. The vHGW algorithm is one of the fastest for computing morphological operations on a serial CPU. This algorithm is compute intensive and can be accelerated with the help of GPU. This project implements vHGW algorithm for erosion and dilation independent of structuring element size has been implemented for different types of structuring elements of an arbitrary length and along arbitrary angle on CUDA 5.0 programming environment with GPU hardware as GeForce GTX 480. The results show maximum performance gain of 20 times than the conventional serial implementation of algorithm in terms of execution time.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: