Architecture-and Workload-Aware Heterogeneous Algorithms for Sparse Matrix Vector Multiplication

Sivaramakrishna Bharadwaj Indarapu, Manoj Maramreddy, Kishore Kothapalli
Center for Security, Theory and Algorithmic Research (CSTAR), International Institute of Information Technology, Hyderabad, Gachibowli, Hyderabad, India, 500 032
19th International Conference on Parallel and Distributed Systems, 2013

   title={Architecture-and Workload-Aware Heterogeneous Algorithms for Sparse Matrix Vector Multiplication},

   author={Indarapu, Sivaramakrishna Bharadwaj and Maramreddy, Manoj and Kothapalli, Kishore},



Download Download (PDF)   View View   Source Source   



Multiplying a sparse matrix with a vector, denoted spmv, is a fundamental operation in linear algebra with several applications. Hence, efficient and scalable implementation of spmv has been a topic of immense research. Recent efforts are aimed at implementations on GPUs, multicore architectures, and such emerging computational platforms. Owing to the highly irregular nature of spmv, it is observed that GPUs and CPUs can offer comparable performance. In this paper, we propose three heterogeneous algorithms for spmv that simultaneously utilize both the CPU and the GPU. This is shown to lead to better resource utilization apart from performance gains. Our experiments of the work division schemes on standard datasets indicate that it is not in general possible to choose the most appropriate scheme given a matrix. We therefore consider a class of sparse matrices that exhibit a scale-free nature and identify a scheme that works well for such matrices. Finally, we use simple and effective mechanisms to determine the appropriate amount of work to be alloted to the CPU and the GPU.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1662 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

337 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: