A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems

Sparsh Mittal and Jeffrey S. Vetter
Oak Ridge National Laboratory (ORNL)
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2015

   title={A Survey Of Architectural Approaches for Data Compression in Cache and Main Memory Systems},


   author={Sparsh Mittal and Jeffrey Vetter},

   journal={IEEE Transactions on Parallel and Distributed Systems (TPDS)},

   keywords={Review, classification, cache, main memory, compaction, compression, data redundancy, non-volatile memory, 3D memory, extreme-scale computing systems}


Download Download (PDF)   View View   Source Source   



As the number of cores on a chip increase and key applications become even more data-intensive, memory systems in modern processors have to deal with increasingly large amount of data. In face of such challenges, data compression presents as a promising approach to increase effective memory system capacity and also provide performance and energy advantages. This paper presents a survey of techniques for using compression in cache and main memory systems. It also classifies the techniques based on key parameters to highlight their similarities and differences. It discusses compression in CPUs and GPUs, conventional and non-volatile memory (NVM) systems, and 2D and 3D memory systems. We hope that this survey will help the researchers in gaining insight into the potential role of compression approach in memory components of future extreme-scale systems.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477587294
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477587294
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => +jL5D726EpCOesR6G/I1d479eUc=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2036 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: