MemcachedGPU: Scaling-up Scale-out Key-value Stores

Tayler H. Hetherington, Mike O’Connor, Tor M. Aamodt
The University of British Columbia
ACM Symposium on Cloud Computing (SoCC 2015), 2015


   title={MemcachedGPU: Scaling-up Scale-out Key-value Stores},

   author={Hetherington, Tayler H and O’Connor, Mike and Aamodt, Tor M},



This paper tackles the challenges of obtaining more efficient data center computing while maintaining low latency, low cost, programmability, and the potential for workload consolidation. We introduce GNoM, a software framework enabling energy-efficient, latency bandwidth optimized UDP network and application processing on GPUs. GNoM handles the data movement and task management to facilitate the development of high-throughput UDP network services on GPUs. We use GNoM to develop MemcachedGPU, an accelerated key-value store, and evaluate the full system on contemporary hardware. MemcachedGPU achieves ~10 GbE line-rate processing of ~13 million requests per second (MRPS) while delivering an efficiency of 62 thousand RPS per Watt (KRPS/W) on a high-performance GPU and 84.8 KRPS/W on a lowpower GPU. This closely matches the throughput of an optimized FPGA implementation while providing up to 79% of the energy-efficiency on the low-power GPU. Additionally, the low-power GPU can potentially improve cost-efficiency (KRPS/$) up to 17% over a state-of-the-art CPU implementation. At 8 MRPS, MemcachedGPU achieves a 95-percentile RTT latency under 300µs on both GPUs. An offline limit study on the low-power GPU suggests that MemcachedGPU may continue scaling throughput and energyefficiency up to 28.5 MRPS and 127 KRPS/W respectively.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
MemcachedGPU: Scaling-up Scale-out Key-value Stores, 5.0 out of 5 based on 1 rating

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1485256968
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1485256968
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => Hgid77DmMvM41nrFUVl4DUNjiF8=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2140 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: