BLASX: A High Performance Level-3 BLAS Library for Heterogeneous Multi-GPU Computing

Linnan Wang, Wei Wu, Jianxiong Xiao, Yi Yang
Georgia Institute of Technology
arXiv:1510.05041 [cs.DC], (16 Oct 2015)

   title={BLASX: A High Performance Level-3 BLAS Library for Heterogeneous Multi-GPU Computing},

   author={Wang, Linnan and Wu, Wei and Xiao, Jianxiong and Yang, Yi},






Basic Linear Algebra Subprograms (BLAS) are a set of low level linear algebra kernels widely adopted by applications involved with the deep learning and scientific computing. The massive and economic computing power brought forth by the emerging GPU architectures drives interest in implementation of compute-intensive level 3 BLAS on multi-GPU systems. In this paper, we investigate existing multi-GPU level 3 BLAS and present that 1) issues, such as the improper load balancing, inefficient communication, insufficient GPU stream level concurrency and data caching, impede current implementations from fully harnessing heterogeneous computing resources; 2) and the inter-GPU Peer-to-Peer(P2P) communication remains unexplored. We then present BLASX: a highly optimized multi-GPU level-3 BLAS. We adopt the concepts of algorithms-by-tiles treating a matrix tile as the basic data unit and operations on tiles as the basic task. Tasks are guided with a dynamic asynchronous runtime, which is cache and locality aware. The communication cost under BLASX becomes trivial as it perfectly overlaps communication and computation across multiple streams during asynchronous task progression. It also takes the current tile cache scheme one step further by proposing an innovative 2-level hierarchical tile cache, taking advantage of inter-GPU P2P communication. As a result, linear speedup is observable with BLASX under multi-GPU configurations; and the extensive benchmarks demonstrate that BLASX consistently outperforms the related leading industrial and academic projects such as cuBLAS-XT, SuperMatrix, MAGMA and PaRSEC.
VN:F [1.9.22_1171]
Rating: 3.7/5 (3 votes cast)
BLASX: A High Performance Level-3 BLAS Library for Heterogeneous Multi-GPU Computing, 3.7 out of 5 based on 3 ratings

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477551002
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477551002
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => a6qMcrtqnCR5Dsyr5hTG2wENWg8=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2034 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: