15445

Programming GPUs with C++14 and Just-In-Time Compilation

Michael Haidl, Bastian Hagedorn, Sergei Gorlatch
University of Muenster
Kolloquium Programmiersprachen (KPS), 2015
@article{haidl2015programming,

   title={Programming GPUs with C++ 14 and Just-In-Time Compilation},

   author={Haidl, Michael and Hagedorn, Bastian and Gorlatch, Sergei},

   year={2015}

}

Download Download (PDF)   View View   Source Source   

624

views

Systems that comprise accelerators (e.g., GPUs) promise high performance, but their programming is still a challenge, mainly because of two reasons: 1) two distinct programming models have to be used within an application: one for the host CPU (e.g., C++), and one for the accelerator (e.g., OpenCL or CUDA); 2) using Just-In-Time (JIT) compilation and its optimization opportunities in both OpenCL and CUDA requires a cumbersome preparation of the source code. These two aspects currently lead to long, poorly structured, and error-prone GPU codes. Our PACXX programming approach addresses both aspects: 1) parallel programs are written using exclusively the C++ programming language, with modern C++14 features including variadic templates, generic lambda expressions, as well as STL containers and algorithms; 2) a simple yet powerful API (PACXX-Reflect) is offered for enabling JIT in GPU kernels; it uses lightweight runtime reflection to modify the kernel’s behaviour during runtime. We show that PACXX codes using the PACXX-Reflect are about 60% shorter than their OpenCL and CUDA Toolkit equivalents and outperform them by 5% on average.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474922676
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474922676
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 0Xn2f9bf/kcgnLoaKzzVJXj5yuo=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1997 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: