GPU-Accelerated High-Accuracy Molecular Docking using Guided Differential Evolution

Martin Simonsen, Mikael H. Christensen, Rene Thomsen, Christian N. S. Pedersen
CLC Bio, Finlandsgade 10-12, Katrinebjerg, DK-8200 Aarhus N
Massively Parallel Evolutionary Computation on GPGPUs, Natural Computing Series, Springer, 2013

   title={GPU-Accelerated High-Accuracy Molecular Docking using Guided Differential Evolution},

   author={Simonsen, Martin and Christensen, Mikael H. and Thomsen, Rene and Pedersen, Christian N. S.},



Download Download (PDF)   View View   Source Source   



The objective in molecular docking is to determine the best binding mode of two molecules in silico. A common application of molecular docking is in drug discovery where a large number of ligands are docked into a protein to identify potential drug candidates. This is a computationally intensive problem especially if the flexibility of the molecules is taken into account. We show how MolDock, which is a high accuracy method for flexible molecular docking using a variant of differential evolution, can be parallelised on both CPU and GPU. The methods presented for parallelising the workload result in an average speedup of 3.9x on a 4-core CPU and 27.4x on a comparable CUDA enabled GPU when docking 133 ligands of different sizes. Furthermore, the presented parallelisation schemes are generally applicable and can easily be adapted to other flexible docking methods.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

244 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1474 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: