10151

Systematic Performance Optimization of Cone-Beam Back-Projection on the Kepler Architecture

Timo Zinsser, Benjamin Keck
Siemens AG, Healthcare Sector, Imaging & IT Division, P.O. Box 1266, D-91294 Forchheim, Germany
The 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and NUclear Medicine, 2013
BibTeX

Download Download (PDF)   View View   Source Source   

2807

views

Filtered back-projection algorithms are widely used for the reconstruction of volumetric data from cone-beam projections in interventional C-arm computed tomography. Furthermore, general-purpose GPUs have become a popular tool for accelerating the reconstruction during time-critical clinical procedures. In this work, we focus on the systematic performance optimization of cone-beam back-projection on the latest architecture of CUDA-enabled GPUs. Our optimization approach is based on the identification of the major performance bottleneck through the analysis of specifically modified kernels. Our main contribution is a smart restructuring of the backprojection algorithm that facilitates the simultaneous processing of a large number of projections and improves the hit rate of the texture cache at the same time. We use the well-known RabbitCT benchmark to demonstrate the outstanding performance of our implementation on a single Kepler-based GeForce GTX 680 GPU. Our implementation performs the back-projection of 496 input projections onto a cubic 5123 volume in less than one second, which is three times as fast as the best competing implementation. Our back-projection implementation is also able to reconstruct a cubic 10243 volume in about six seconds, which is six times as fast as the best competing implementation known to us.
No votes yet.
Please wait...

You must be logged in to post a comment.

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org